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ON FUNDAMENTAL DOMAINS 
OF ARITHMETIC FUCHSIAN GROUPS 

STEFAN JOHANSSON 

ABSTRACT. Let K be a totally real algebraic number field and ( an order in 
a quaternion algebra A over K. Assume that the group (1 of units in ( with 
reduced norm equal to 1 is embedded into PSL2 (R) as an arithmetic Fuchsian 
group. It is shown how Ford's algorithm can be effectively applied in order 
to determine a fundamental domain of (1 as well as a complete system of 
generators of (1. 

INTRODUCTION 

Let K be a totally real algebraic number field of degree n over Q. Let R be 
the ring of integers in K and {f, ... , gn } the n different embeddings of K into DR. 
Assume that 2t is a quaternion algebra over K such that 

(0.1) A R Q V M2(kR) x EHn1, 

where HEE is the Hamiltonian quaternion algebra. We fix a, to be the only embedding 
of K into kR such that 

0K,1 R-_M2(R). 

We will throughout this paper assume that 2t is a division algebra, that is, 2t % 
M2(K). 

An order O in 2t is a subring of 2t containing R, which is finitely generated as 
an R-module and such that K() =2. We consider the group 

Cl = {x E 0: N(x) 

where N is the reduced norm from 2t to K. The map a1 induces an embedding of 
01 as a discrete subgroup in PSL2(IR) = SL2(R)/ {?1}. Such a discrete subgroup 
(or any commensurable with such) is called an arithmetic Fuchsian group. 

The group SL2(R) acts on the complex upper half-plane 'H by Mobius transfor- 
mations 

. z =az+ whereg= [g E SL2(R). 

Since the action of -1 is trivial, we get an action by PSL2(]R). If F is a discrete 
subgroup of PSL2(R), then it is possible to provide the quotient space F\'K with 
the structure of a Riemann surface. 
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The main aim of this paper is to describe an algorithm, which finds a fundamental 
domain of F in 7-, when F = O1 for an order ( in a quaternion division algebra. In 
this case F\- is compact, since 01 does not contain any parabolic elements. The 
basis of the algorithm is Ford's classical method [3]. However, the observation that 
this can be used in the present case to give an efficient algorithm seems to be little 
known, at least when K 74 (Q. 

In Section 1, we recall the basic facts about quaternion algebras that are needed 
in the paper. Section 2 contains the general idea of our algorithm. In Section 3, 
we derive an explicit matrix representation of a maximal order in an arbitrary in- 
definite quaternion algebra over (Q with given discriminant. Such representations 
already exist in the literature, but ours is very simple and well-suited for calcu- 
lations. By using this representation, we get a completely explicit algorithm that 
finds a fundamental domain when (9 is a maximal order in an arbitrary indefinite 
quaternion algebra over (Q. For a non-maximal order 0, it suffices to find a basis 
of (9 in a maximal order. The case K Q is different and much easier than the 
general case. Therefore, we illustrate the general case in Section 4 by giving a 
careful explanation when K is a quadratic field. We conclude the paper with some 
remarks and examples. 

1. QUATERNION ALGEBRAS 

It is well-known that one can always find a basis 1, j, k, jk for A over K which 
satisfies 

(1.1) j2=a, k2 = b and jk =-kj, where a, b E K, ab #4 O. 

We will denote this algebra by (a, b)K. It can be embedded in M2(K(\a)) (or 
M2(K(V')))) for example by 

i! 0 - [ a_+ and ji I 0 

There is a natural involution in (a, b)K, which in this basis is given by 

x = xO +X + x2k + x3jk H- x-= xO-xIj-x2k- x3jk. 

The (reduced) trace and (reduced) norm are defined by 

Tr(x) = x + x and N(x) = xx. 

If we evaluate the norm, we see that it is the quadratic form 

N(x) = x2-ax -bX2 + abx. 

In order to get control over the different isomorphism classes of quaternion al- 
gebras over K, one considers the completions 2t = A?K K>. Here K, is a com- 
pletion of K corresponding either to a prime ideal, or to one of the infinite (real) 
embeddings. It is well-known that for every 2t there are only two possibilities: 
2, - M2(K,) (Q splits at v) or %, -IH- , (Q is ramified at v), where IHI, is a 
division algebra over K, unique up to isomorphism. The following classical result 
of Hasse solves the problem of classifying quaternion algebras up to isomorphism 
[7, ??57, 71, 72]. 

Theorem 1.1. Two quaternion algebras over K are isomorphic iff they are ram- 
ified at the same places. Every algebra is ramified at an even number of places. 



ON FUNDAMENTAL DOMAINS OF ARITHMETIC FUCHSIAN GROUPS 341 

Conversely given an even number of places, it is possible to find a quaternion alge- 
bra which is ramified exactly at those places. 

It is obvious that (a, b)R is ramified iff both a and b are negative. In order to 
decide whether (a, b)K, is ramified when v = p is a prime ideal, it is convenient to 
use the Hilbert symbol (ab) (see [7, ?63]). The algebra (a, b)K is ramified at p iff 

We define the discriminant d(Qt) of A to be the product of the prime ideals at 
which A is ramified. Let (9 be an order in A. Then the discriminant d(O) of 
(9 is defined to be the square root of the R-ideal generated by all det(Tr(xixj)), 
where {x1,X2,x3,X4} C 0. If M is a maximal order in A containing 0, then the 
discriminants satisfy 

(1.2) d(0) = d(M)* [M: 0] and d(M) = d(). 

If A _ (a, b)K, then %42-- (ui(a), iu(b))R for all 1 < i < n. We identify K with 
its image a,(K) in JR. Hence our restriction (0.1) on the splitting of A is equivalent 
to at least one of the two numbers {a, b} being positive, but both numbers being 
negative for all pairs {ai (a), vi (b) } with i > 1. 

2. GENERAL CASE 

First we fix an embedding of (91 in PSL2(IR). We denote the image of 01 in 
PSL2(R) by F'. We choose this in such a way that i E 'H is not a fixed point of 
any nontrivial element in F . The Mobius transformation given by the matrix 

maps H to the unit disk U, and in particular i to the origin. The action of SL2(IR) 
on H transforms to an action of SU(1, 1) on U, since 

SU(1, 1) = o SL2(R) -o' 
The conjugation of F' by o gives an embedding F of 01 in SU(1, 1). Since the 
origin is not a fixed point of any nontrivial element in F, it is possible to use Ford's 
method to find a fundamental domain in U. This method relies on Theorem 2.1 
below. 

First, recall that if 

9 
a [ E SU(1i1i) or g E SL2(IR) 

with c 74 0, then the isometric circle Cg of g is defined by 

Cg = {z E (C: Icz+dl = 1}. 

The geometric meaning of this is that Cg is the set of points where g acts as an 
Euclidean isometry. The following theorem was first proved by Ford in [3]. 

Theorem 2.1. Let F be a discrete subgroup of SU(1, 1) such that the origin is not 
a fixed point of any nontrivial element in F. Let Cg be the isometric circle of g. If 
Cg?is the set of all points outside Cg, then 

F = U nn cgo 
gEr 

is a fundamental domain of F. 
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We remark that p1F is obviously a fundamental domain in 'H. 
It is trivial to check that the origin of every isometric circle is outside of U. Let 

F, be the set of all elements g E F for which the radius of Cg is greater than C. The 
set of different isometric circles Cg with g E Ie is finite for every discrete group F 
and every positive number c. Now if 

(2.1) F, =U n n Co U, ={zEC: Iz < 1-}, Fe CU, 
gEr" 

then F, is a fundamental domain of F, since the origin of every isometric circle is 
outside of U. This will eventually be the case for some e > 0, since there are no 
parabolic elements and the hyperbolic area of a fundamental domain is finite in our 
case. Our goal is now to determine F,. 

Let g be an element in F' C PSL2(IR), and suppose that 

a b 
9= c d. 

If r9 denotes the radius of the isometric circle of g1 E F, then a direct calculation 
gives 

(2.2) 2 2 

( 2(a-d)2+(b+c)2V'a2+b2+c2+d2_2 

Hence a restriction r9 > c gives an upper bound on the absolute value of the entries 
of g. 

Since the norm is positive definite in all the other n - 1 embeddings, we get 
upper bounds on the absolute values of vi (a), vi(b), vi(c), vi(d) for 2 < i < n. Now 
since we have bounds on all the n different real embeddings of the entries in F, we 
get that we only have to try a finite number of elements for the entries of g in order 
to find F,. 

When we have found F,, we have in general an unnecessarily large set. Therefore 
it is convenient to determine the subset 

IF ={g E ,: Cg X U Ch}. 
hEre ,h#g 

Then we clearly have 

F, F, := u n n cgo 
If F, C U,, then we have a fundamental domain. Otherwise, we have to take a 
smaller e and continue our search. 

The realization of these observations is probably best explained by a detailed 
examination of the special case n = 2. But first we will give a totally explicit 
solution in the case when K Q and ( is a maximal order. 

3. RATIONAL CASE 

We begin with a solution to the representation problem of an indefinite quater- 
nion algebra with given discriminant. 

Proposition 3.1. Let A be an indefinite quaternion algebra over Q, with discrimi- 
nant d = Pi * P2r. Choose p to be a prime such that p _ 5 (mod 8) and (Pi) --1, 

Vpi > 2. Then A (p, d)QU. 
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Proof. The Chinese Remainder Theorem and the Dirichlet Theorem about primes 
in linear progressions assure the existence of infinitely many prime numbers p ful- 
filling the requirements. Calculating the Hilbert symbol gives 

(p, d (pi Pi P) =-1, if pi >2. 
Pi Pi Pi 

Since (2) =-1, while p 5 (mod 8) and ( P )(Ppi) = 1, while p -1 (mod 4), we 
also have 

pd 2r 

( p = 
' (p ) 

Hence (p, d)Q is ramified at all odd prime numbers dividing d and not at p. Since 
it is not ramified at any other odd prime and ramified at an even number of places, 
it has to have the same discriminant as 2t. Hence 2t is isomorphic to (p, d)Q. C 

Now suppose that 2t has discriminant d and that p is a prime number satisfying 
the conditions in Proposition 3.1. Let 01 be the order with 2-basis 1, j, k, jk, where 

j2 = p k2 =di jk =-kj. 

Then the discriminant of 01 is equal to 4pd. Let m be an integer such that d 
m2 (mod p). It exists since (d) = 1. The two elements 

1+ j mj +jk 
(3.1) el = 2 and e2 = I 

as well as their products, all have integer norms and traces. Hence 

0 = Z + Ze1 + ZC2 + Zele2 

is an order. FRurthermore, since a direct computation gives [0 : 01] = 4p, we get 
that 0 is a maximal order in 2t. Since all maximal orders in an indefinite quaternion 
algebra over ?Q are conjugate [2], we have proved: 

Proposition 3.2. Let 2t be as in Proposition 3.1. Then every maximal order in 2t 
is conjugate to 0 = Z + Zel + Ze2 + Zele2, where e1 and e2 are defined by (3.1). 

There are several more complicated presentations analogous to Proposition 3.2 
in the literature. See for example [6]. 

We now fix an embedding in M2(R) by setting 

j= [~/ a 01 and k= 0 \/ 1 
[0 x/- [Vp-fd- o 

Then it is straightforward to show that 0 consists of all elements g such that 

_9 1 px + yN_ -d(pz + v.P)l 
9 2p Lfd-(pz - v.fp) px -yN j ' 

where 

(3.2) x, y, z, v E 2, v z (mod 2), x _ y (mod 2), y mv (mod p). 

We get that 

N(g) =- 2(pX2 - dpz2 + dv2), 
4p 

and observe that i is not a fixed point for any g E (1, since px + dv2 4p has 
no integer solutions except x = ?2, v = 0. If we let s = y2 + dpz2, then N(g) = 1 
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implies px2 + dv2 = 4p + s and s > 0 if g 74 ?1. The radius r9 of the isometric 
circle of (p(g) is closely related to the norm, because we get 

2 2v/p 

' 

I9 

2 1 

(pX2?+y2 

dpz2 dv2)2 

\/s 
Hence by searching for integer solutions satisfying (3.2) to the equations 

S = y2 + dpz2 and 4p + s = px2 + dv2 
for increasing parameter s, we get a listing of the elements in 0-1 with decreasing 
radius rg. This idea can be found in [5, (5.6)] for a special case. 

4. QUADRATIC CASE 

We now turn to the case when K = Q(Vin), where m is a positive, square free 
integer. Let A be a quaternion algebra over K satisfying (0.1), and fix a basis as 
in (1.1), such that A ' (t, S)K. We may suppose that t > 0 and that ft f K. We 
fix an embedding of A into M2(IR) by letting 

j= [] W +/ j and k=[ 0 =] 

where rl, r2 E JR are such that s = rlr2. If we choose r, #4 ?r2, then i is never a 
fixed point of any nontrivial element in an order ( in A. However, if it is possible 
to choose r, = ?r2 = ?t+/sj without i being a fixed point, then this will give the 
most efficient bounds. Let a = a, + a2 Em 2[E Z i], and similarly for b, c, d. Now 
we see that any order in St may be realized as all elements of the form 

IF a + bVt ri (c + d) ] 

9 r Lr2(C- dv) a-b it ' 
where ai, bi, c .,di satisfy some specific congruence conditions and r E 2. This of 
course is true in the general case if a a a- yi and similarly for b, c, d, with {yi} a 
basis of K over (Q. The norm for g is given by 

N(g) = -(a2 -tb2 - sc2 + std2). 

Now for the other embedding U2, for convenience we denote U2(x) by x. If 
N(g) = 1, then N(g) = 1 and hence 

(4.1 ) ~~~~2 = 62 - t-2 - g 2 + gtd2. (4.1) T2 tbi2a2~i 

Since both s and t are negative, this gives the following successive bounds: 

r - 

lbl < r 

(4.2) l d Er2t 2+b2 

IdC < s/ -s 

In the general case [K Q] n, we get n - 1 systems of bounds like (4.2). 
Prom (2.2), we get that r9 2 where 

q=- (2a2+2tb 2+ t r2d2+(r, +r2 )(c+d 2+ r2) 1 2 1 ~~~~~~~2) 
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Now r9 > c is equivalent to q < N, := 2 + e4 and q < N, implies the following 
bounds: 

;lal < r 2, 
(4.3 ( r NE 

2E bl K j t(rN N-2a) 

(43) ]Idl < jr2tj (r2N - 2a2 - 2tb2) 

lci < /r2?r2 (r2N, - 2a2 - 2tb2 - 
4St2d2) 

+ 
2 2'V'ltdl 

The mean value of the bound on &al in (4.2) and the one on lal in (4.3) are bounds 
on the absolute value of a1, and the corresponding holds for b1, c1 and d1. Moreover 
the bounds in (4.2) give the following relative bounds: 

ai-Bal ai +Ba 
< a2 < 

N~d-vfd' 
where Ba (= r) is the bound on Ia . Similar bounds hold for b2, C2 and d2. These 
bounds give a finite set of integer vectors (a,, b1, c1, d1, a2, b2, C2, d2) to check in 
order to get O1. Since -1 is equal to 1 in PSL2(IR), we may restrict to a, > 0. 
In the general case, it might of course be more elaborate to determine bounds on 
ai, bi, ci and di, but there is no difficulty in doing it. 

5. REMARKS AND EXAMPLES 

Before we conclude with some examples, we make a few remarks. The first one 
concerns a generalization to a wider family of arithmetic Fuchsian groups, and the 
second one gives a coarse estimate of the number e in (2.1). 

Remark 5.1. Let U be the units of R, let U+ be the set of totally positive elements 
in U and let U2 be the subgroup of all squares in U. We have 

0 = {x E 0: N(x) E 

with an isomorphism given by x -* x4 N/(x). Now let E be any group such that 
U2 C E C U+. Then the group 

OE = {x c 0: N(x) c E}/U 

acts on AH, and we get a Riemann surface OE\H-. It is easy to adapt our method 
for this case. To do so, we choose representatives for the cosets of U2 in E. Then 
we search for elements in 0 with norm among the representatives, instead of just 
for those with norm equal to one. We may have to adjust the bounds slightly, since 
the second equality in (2.2) is changed when the norm is not equal to one. 

Remark 5.2. Let ( be a maximal order in an algebra A over K, and let F be a 
fundamental domain of OE in H. If A denotes the normalized hyperbolic area on 
'H corresponding to the form w = dxdy then we have [8] 

(5.1) _n2F) n(2) [E U2] fi (Np - 1), 
p Id(%) 
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where Np is the norm of p, and (K is the zeta function of K. If we are able to use 
this formula to calculate the area of a fundamental domain, then this will give us 
an idea on how to choose c. A direct calculation gives 

__2(1 - C)2 
i(Ue) - 1- (1- 6)2' 

and F c U, implies 

6<6o =1- 4ir,u 

This is far from sufficient, and examples suggest that c = co/2 is a sufficient choice 
when b(.F) is small (< 200). However, when b(.F) grows, then we have to choose 
c = co/k, where the factor k is larger than 2 and grows with A(QF). It is the presence 
of big isometric circles that forces e to be small. 

Remark 5.3. A Ford fundamental domain also gives us a finite set of generators of 
OE namely, the set of elements which correspond to the isometric circles which 
make up the sides of the fundamental domain. However, in general this set is not 
minimal. 

We conclude with some explicit examples. 

Example 5.4. First let K = Q(v') and let p be a prime satisfying p _ 3 (mod 8). 
Thus p remains prime in K. We adopt the notation from the beginning of Section 4 
and set 

(5.2) t = If t=l+ \f, s = -p, r =2, 
(52) lai = ci (mod 2) and bi di (mod 2) for i = 1, 2. 

Then it is easy to check that the discriminant of 2t = (t, S)K is equal to p, and 
that the elements satisfying (5.2) form a maximal order 0 in 2t. This is all the 
information we need to determine a fundamental domain for 01 in H. For example, 
in the special case p = 3, we get the fundamental domain in Figure 1. 

The point D is the only elliptic point, and it is of order 3. The generators and 
the sides which they identify are given in Table 1. From this we get that the genus 
of the surface is equal to 1. 

TABLE 1. Generators of the group corresponding to Figure 1. 

a1 a2 b1 b2 c1 C2 d1 d2 Identification 
1 0 0 0 1 0 0 0 AD A'D 
1 1 0 -1 -1 -1 0 -1 AB-) A B 
1 1 0 1 1 1 0 1 A B-B AB 
1 1 0 1 -1 -1 0 -1 A" C" A 'C 
1 1 0 -1 1 1 0 1 A'C' A "C" 
2 1 -1 1 -2 -1 -1 -1 B" C - B C 
2 1 1 -1 2 1 1 1 BC- B /BC 
2 1 1 -1 -2 -1 -1 -1 BC-* B C 
2 1 -1 1 2 1 1 1 B C ) BC 
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FIGURE 1. Fundamental domain in the case of a maximal order in 
(1 + VX_, -3),Q(,2). 

Example 5.5. The next example is well-known and was first constructed from 
a geometric point of view; see [1]. Again we take K = Q(x/2), but now let 
t =vF2 - 1, s =-1 and r = 1 and no congruence conditions. The order (9 in 
A= (XvF2- 1, -1)K which we get has d(O) = 4, and since d(2A) = X the index of 
( in a maximal order in 2A is 2X. Let F be the subgroup of index 2 in (91, which 
is defined by restricting to a1 odd. Then the fundamental domain we get for F is 
the regular octagon in Figure 2 with opposite sides identified. 

Example 5.6. Now let w be a root of an irreducible polynomial f of degree 3 
with integer coefficients, and let K = Q(w) be the cubic field generated by W. We 
suppose that K is totally real, R = 2[w] is the ring of integers in K, and w is a unit 
in R. Furthermore, assume that w = 51(w) > 0, 52(W) < 0 and 3(W) < 0 for the 3 

FIGURE 2. The regular octagon. 
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different embeddings of K in JR. We consider the quaternion algebra A= (w, -1)K. 
It satisfies the condition (0.1), and if 2 is not split in K, then 2A is only ramified at 
the two real places corresponding to u2 and u3. Let 1, j, k, jk be a basis 'for 2A like 
the one in (1.1). If (9 = R + Rj + Rk + Rjk and M is a maximal order containing 
(9, then [M: 0] = 4. 

Now we fix w to be the positive root of the polynomial 

f(x) = x3 + 29 - x - 1. 

Then all the conditions above are satisfied. The field K is the unique cubic Galois 
field with discriminant equal to 49. We fix an embedding of 2A into M2 (R) by setting 

.[= [ 0] _ and k [0 -2? 

Let a= a, + a2w + a3w2 C R and similarly for b, c, d. It is not hard to verify that 
a maximal order M containing (9 is given by all elements satisfying 

f t=w, s=-1r, r= 2, r2 = - 1 r=2, 
r 2' 

(53) (d 2-a2)+ a3+ b2 (mod 2), di-a3+ b2+ b3 (mod 2), 
( ' ) ]C2= a, + a2+ b2+ b3 (mod 2),7 d2= a, + a3+ bi + b2 (mod 2),7 

C3 = a, + a2 + a3+ bi + b3 (mod 2), d3-=a2+bl +b2+b3 (mod 2), 

where we again adopt the notation from the beginning of Section 4. 
In the case of a cubic field K, we get two sets of inequalities like the one in (4.2). 

They correspond to the second and third embedding of K into R. Combining these 
with the inequalities (4.3), we get bounds on ai, bi, ci and di for i = 1, 2, 3. By using 
these, we get the fundamental domain in Figure 3. 

The point A is elliptic of order 7, B is elliptic of order 3, and the points C and 
C' are identified and are elliptic of order 2. The group M1 is generated by the 
elements g2, g3 and g7 satisfying the relations 

2 _3 _7_ _ 2 = 
93 

= 7 = 
g2g3g7 

- 1 

with coefficients given in Table 2. 

FIGURE 3. Fundamental domain in the case of a maximal order in 
(, -l)(Q(w), where w is the positive root of x3 + 2X2 X-1 = 0. 
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TABLE 2. Generators of the group corresponding to Figure 3. 

a, a2 a3 b1 b2 b3 cl C2 c3 di d2 d3 
q2: 0 0 0 -2 1 1 -1 -2 -1 2 1 0 
q3: -1 0 0 0 0 0 0 -3 -1 2 1 0 
q7: -1 -1 0 0 0 0 -1 0 0 2 -1 -1 

The element g7 identifies the sides AC and AC', and g3 identifies the sides BC 
and BC'. We get a Riemann surface of genus 0. Of course, the group M1 is 
generated by g3 and g7 only, since g2 = g3g7. 

The genus g satisfies the following equality: 

2g -2 = i(Y) - eq q -, 
q>2 q 

where ,u(F) is the area of a fundamental domain and eq is the number of ellip- 
tic points of order q. If we combine this with (5.1) and our result, we get that 
(K(-1) =-211 . This agrees with the result in [4]. 
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